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Abstract. A simple Hamiltonian system with two degrees of freedom is investigated 
numerically. Although the Hamiltonian is not everywhere differentiable but continuous, 
we nevertheless find KAM ton, showing that not all the assumptions of the KAM theorem 
are necessary. Furthermore there exist islands in phase space, embedded in a chaotic 
region, where the system seems to be exactly integrable. 

As is well known, the bounded orbits of an integrable Hamiltonian system lie on tori 
filling the phase space. The survival of these tori under a non-integrable perturbation 
is a question of great theoretical and practical importance. Since Kolmogorov conjec- 
tured that part of the tori survive if the perturbation is analytic, and this was proved 
by Arnold, the assumptions for their survival have become weaker with time. For 
instance, Moser [l] has shown that it is sufficient to assume the perturbation to be M 
times continuously differentiable with M a 4, but he conjectured that M = 3 is sufficient. 
Numerical examples have been found where invariant tori exist with M = 2 [2,3] and 
others where no tori exist for M = 2 [4]. Thus there have been speculations [2] that 
M = 3 is always sufficient and M = 2 is necessary for the theorem to hold. But some 
years ago these speculations were shown be be wrong by constructing dynamical 
systems with M = 0 still possessing invariant tori [5-81. The slight shortcoming of the 
systems discussed in [6,7] is their artificiality from a physical point of view. 

In this letter we introduce a simple Hamiltonian system with two degrees of freedom. 
Although the Hamiltonian is not everywhere differentiable, we have strong numerical 
evidence for the existence of KAM tori, thus giving another, more physical, example 
for the presence of tori in the M = 0 case. A further interesting property of this model 
is the apparent coexistence (on the same energy hypersurface!) of chaotic regions and 
of exactly integrable islands, i.e. regions in which no stochastic behaviour seems to 
exist. This feature has already been observed in other systems [7,9,10] but these were 
constructed such that this feature occurs. 

The model we investigate is a two-particle version of a one-dimensional Hamiltonian 
used to describe disordered materials [ 111 and has the form 
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i.e. it consists of two harmonically coupled particles, each of which feels an external, 
anharmonic potential given by patching together two identical parabolae at a given 
point c (see curve a in figure 1). This Hamiltonian has several important properties. 

(i) It is not differentiable at { ( q l ,  q2)lql = c or q2 = c } .  
(ii) The configuration space is divided into four disjoint sectors given by 

{ ( S I ,  q 2 ) l q l >  C, q 2 >  C), ((41, q2)lql < c, q2> c } ,  etc. Inside each sector H is harmonic 
and the system feels the anharmonicity only if one of the particles crosses the patching 
point at c. 

(iii) The potential energy is symmetric with respect to interchange of q1 and q2.  
The piecewise linearity of the corresponding equation of motion makes the numeri- 

cal integration of a trajectory unusually easy. As long as the system stays in one of 
the sectors, the solution can be obtained analytically. Given a starting point in phase 
space, one has to calculate only the first time at which the system leaves the sector in 
which it started, i.e. one seeks for the smallest roots t l  , f 2  of the transcendental equations 

41(tl) = c q 2 ( f 2 )  = c. (2) 
Here ql( t )  and q2( t )  are analytically given expressions depending on the initial point. 
Having obtained t* = min{t,, f 2 } ,  one takes the state of the system at time t* as the 
new initial point, but now for the new sector. The calculation of points for PoincarC 
sections can be done in a similar way. Note that the only numerical errors introduced 
in the calculations stem from finding the roots of the transcendental equations and 
are certainly much smaller than an error one would obtain by integrating the equations 
of motion numerically with a standard algorithm for solving non-linear differential 
equations. This fact allows the integration of the trajectories to a much higher precision 

x 

Figme 1. Curve a represents the external potential in Hamiltonian (1 ) .  Note the cusp 
destroying the global differentiability. Curve b shows a smooth approximation of the 
potential a. 
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compared to other dynamical systems (for the same amount of computer time). Typical 
integration times were 104-105 time units with typical timescale of the system of order 
21r. This results in typically id-10~ PoincarC points. 

For all calculations we have chosen the following values for the parameters: 
C1= C2 = -0.217 398 372 368 26 a+ = 6.123 4252 a- = 0.447 648 4686 
c = 6.585 757 438 67 

In figure 2 we present Poincari sections of the system with the surface given by 
qz - 7 = 0 and pz 2 0 for different energies E. Several features can be observed. 

(i) For E smaller than a critical value E, (which is the energy of the lowest saddle 
point of the potential energy in configuration space) the particle cannot escape a 
harmonic sector. Thus for E c E, the system is integrable. In our case E,- -0.809. 

(ii) For all energies larger than E, there exist invariant ton as well as chaotic orbits 
with finite measure (see figure 2). This behaviour, both regular and irregular, was 
confirmed by the calculation of the corresponding Lyapunov exponents. 

(iii) The measure of the chaotic region increases (for E s 0) with energy and takes 
a maximum at E -0 (cf figures 2(a) and 2(c)). A further increase of E leads to a 
decrease of this measure (cf figure 2 ( d ) .  

(iv) For E + Q) the system becomes integrable again. This behaviour, which has 
been already observed in other dynamical systems [12], can easily be explained as 
follows. Scaling the coordinates qi and the momenta pi  ( i  = 1,2) with a, i.e., 
introducing xi = q i / O  and yi = p i l a ,  one obtains an equation of motion with a 
non-linearity proportional to l / a .  Therefore the limit E -* CO leads to integrability. 
Figure 2(d), where two large regions of regular behaviour can be identified, demon- 

b = 10.743 688 383 8474. 
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piouC2. Poincark sections for the system at different energies: (a) E = -0.72, ( b )  E = -0.6, 
(e) E =O.O and ( d )  E = 200. For the marked orbits (arrow) refer to figure : and figure 5. 
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strates this fact. The fixed points inside these regions are related to the two normal 
modes of the integrable system, i.e. where a- = 0. The orbits in the upper and lower 
islands correspond, respectively, to motions along the q1 = q2 line and q1 = -q2 line. 

We now want to present some observations supporting our claim that the system 
is integrable in some of the islands shown in figure 2. To do this we examine two of 
them in more detail. We stress the fact that the trajectories of the particles corresponding 
to this island cross the coordinate qi = c, i.e. they really feel the non-linearity. 

Figure 3(a) shows the island marked in figure 2(a) .  Because chaotic regions are 
usually found most easily in the vicinity of hyperbolic fixed points, we made PoincarC 
plots of the neighbourhood of one of them. These PoincarC sections are presented in 
figure 3 on different length scales. Although the magnification in figure 3 ( d )  compared 
to figure 3(a )  is more than lo3, no chaos is seen. All trajectories behave in an absolutely 
regular manner up to a scale where noise in the numerical integration prevents further 
magnification. Thus it seems as if the system is integrable in this region of phase space. 
To check whether this kind of test is sensitive enough to detect chaos in the vicinity 
of hyperbolic fixed points, we performed analogous calculations for the Hamiltonian 
(1) but with a smooth potential (curve b in figure 1) instead of the patched one-particle 
potential. The smooth potential, described by a polynomial of degree 6, was chosen 
to approximate the former one in the most relevant region (i.e. 4 6  x s 7.5) as well as 
possible (cf figure 1). For low energies PoincarC plots of both potentials are qualitatively 
similar, showing the comparability of the two systems. Using the smooth potential 
and an energy comparable to that used in figure 3, we investigated one of the correspond- 
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pbvc 3. Successive m&cations of the bland marked in figute 2(a). Note that the zero 
point of the coordinate system has been shifted in (e) and ( d ) .  
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ing islands and performed an analysis analogous to that in figure 3. The resulting 
PoincarC plot for q2-5.6=0 is shown in figure 4. The existence of chaotic motion 
near the hyperbolic fixed points is clearly visible even on this modestly magnified scale. 
Note that to compute these orbits we have used a fifth-order Gear algorithm, forcing 
the integration scheme to have (for smooth potentials!) a similar accuracy as the 
root-finding procedure for the piecewise parabolic potential. So the two algorithms 
should be comparable in accuracy. Unfortunately it is not advisable to use the Gear 
method for the original, non-diff erentiable potential because this algorithm requires 
the boundedness of 4 ( t )  in order to yield accurate results. Nevertheless, we are 
convinced that the integrable islands in figure 3 and the chaotic behaviour in figure 4 
are geniune. Thus, the unusual behaviour found in model (1) seems to be related to 
its piecewise harmonicity. 

Another supporting fact for integrability in certain islands is the evidence for the 
existence of periodic orbits giving rise to lines of fixed points under some iterate of 
the PoincarC map. In figure 5 we show a region which is part of the island marked in 
figure 2 ( b ) .  Within that island we have chosen a certain number of initial points 
arranged equidistantly and parallel to the p ,  axis and have calculated their higher-order 
iterates (q(122n),p(122n)) (the orbits have winding number near 8). This was done for 
five different,arbitran'lyy chosen sets of initial points. The results are shown in figure 
5(a)  for n = 0,1, . . . ,6, where the initial points as well as their higher iterates of each 
set are connected by lines for better visualisation. Surprisingly, for each set these lines 
intersect in exactly one point which must be a fixed point of the PoincarC map. This 

I I I I 1 

5.79 9 1  5.83 

0 

-re 4. Magnified view of an island in the Poincar6 plot of the modified potentiat (curve 
b in figure 1). The energy and the island correspond approximately to that in figure 3. 
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Figure 5. Magnified view of the island marked in figure 2 ( b )  exhibiting the existence of 
fixed points with arbitrarily chosen q l .  Figure 5 ( a )  shows five sets of initial configurations 
(vertical lines) having different values for q, and its higher-order iterates (q(22"' ,  P(~~")). 
In figure 5(  b )  the two lowest-lying sets of figure 5( a )  are represented with higher resolution. 
The integers denote the order n of the higher-order iterates. 

behaviour is demonstrated in figure 5 ( b )  on a smaller scale. Shifting the vertical lines 
in figure 5 ( a )  parallel to the p1 axis, we found a finite interval for pio' with no other 
fixed point of order around 22 except those in figure 5 ( a ) .  Furthermore, each of the 
five fixed points belongs to five diflerent periodic orbits. Because each of these orbits 
is of the same period 22 it is reasonable to conclude that they lie on a line, i.e. a 
fixed-point line as it occurs for an integrable system with rational winding number. 
Moving with the initial point (q?, pro') towards the centre of the island, the winding 
number changes and finally one hits another fixed-point line. Remembering the generic 
behaviour of non-integrable Hamiltonian systems with chains of alternating elliptic 
and hyperbolic fixed points, this is an unusual behaviour. 

In this letter we have presented numerical evidence for two unusual properties of 
Hamiltonian systems. Firstly, we have found the existence of KAM tori although the 
Hamiltonian is not everywhere differentiable. This shows that the assumptions in the 
KAM theory are too strong. Continuity seems the only condition to be necessary for 
the existence of tori. Whether or not invariant tori exist for systems with M < 3 depends 
on the system itself. Secondly, we have found evidence for the coexistence (on the 
same energy hypersurface) of simply connected regions where the motion seems to be 
exactly integrable, and regions in which the motion is chaotic. This evidence is 
supported by the existence of fixed-point lines and the absence of chaotic behaviour 
in the vicinity of hyperbolic fixed points. In such a situation, there must exist an 
additional integral which is not defined everywhere in phase space but only on these 
islands. We have tried to calculate the additional integral for these islands but have 
not succeeded. The problem one encounters is to solve the transcendental equation 
(2) for t ,  and t 2 .  The method of Whittaker, usually employed for searching such 
integrals, is not applicable in this case, but perhaps other methods may succeed. 

We are grateful to Professor H Thomas for many stimulating discussions. This work 
was supported by the Swiss National Science Foundation. 
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